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Abstract—Handwritten character recognition is a hot topic
for research nowadays. If we can convert a handwritten piece
of paper into a text-searchable document using the Optical
Character Recognition (OCR) technique, we can easily under-
stand the content and do not need to read the handwritten
document. OCR in the English language is very common, but in
the Bengali language, it is very hard to find a good quality OCR
application. If we can merge machine learning and deep learning
with OCR, it could be a huge contribution to this field. Various
researchers have proposed a number of strategies for recognizing
Bengali handwritten characters. A lot of ML algorithms and deep
neural networks were used in their work, but the explanations of
their models are not available. In our work, we have used various
machine learning algorithms and CNN to recognize handwritten
Bengali digits. We have got acceptable accuracy from some ML
models, and CNN has given us great testing accuracy. Grad-CAM
was used as an XAI method on our CNN model, which gave us
insights into the model and helped us detect the origin of interest
for recognizing a digit from an image.

I. INTRODUCTION

The term ”OCR” stands for ”Optical Character Recogni-
tion.” It is a technique for detecting text within a digital image.
Text recognition in scanned documents and photographs is a
typical application. OCR software can convert a physical paper
document or an image into an electronic text-searchable ver-
sion. There are many programs that can easily convert a digital
image into an editable document. Some of the work, like OCR
from printed paper using the RNN network [1] and the open-
vocabulary OCR system [2], has great accuracy in character
recognition in the English language. There is also a lot of
work on translating the handwritten papers into documents.
Most of them are in the English language. A novel work [3]
by Rumman Rashid Chowdhury et al. on Bengali handwritten
character recognition combining CNN with augmentation for
50 Bengali characters can be referred to here where they
have achieved 95.25% accuracy. If we can combine machine
learning approaches to recognize handwritten characters, then
it will be a great contribution to the Bengali OCR arena.

As previously stated, much work has been done in this
field, but it is not complete because they are relying solely on
the model. Explainable AI models are largely used nowadays
to explain models that were supposed to be black boxes for
us previously. A lot of XAI methods are used to understand
normal feature-based datasets where we can measure the
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participation of any particular feature in a model to predict
something. But for images, it is quite hard to visualize the
participation of the pixels in prediction. Grad-CAM is the
solution to this problem. In our research, we employed Grad-
CAM to show the regions that are responsible for the final
forecast. our contribution in this paper can be summarized
into the following points -

‚ We have performed a handwritten digit recognition task
on two widely used datasets, Ekush and NumtaDB, which
contain a large number of digit and character images.

‚ In the search for a better model for character recognition,
several machine learning algorithms, and a Convolutional
Neural Network has been employed.

‚ We have used the Grad-CAM class activation map as
an Explainable AI tool for our task to explain the CNN
model we have trained.

II. RELATED WORKS

Earlier recognition of handwriting was done using the differ-
ent image-processing techniques. A work by T. K. Bhowmik
et al. on handwritten character recognition using basic stroke
features [4] has shown us an earlier approach to recognizing
handwritten characters where they have used multi-layer per-
ceptron (MLP) as a classifier. A work on English handwritten
character recognition [5] by Anita Pal et al. can also be
shown as an earlier work. They also used MLP but they
took skeletonization, normalization, binarization, and most
importantly Fourier transform into consideration. The paper
on handwritten digit recognition by Cheng-LinLiu et al. used
3 English handwritten digit datasets which are CENPARMI,
CEDAR, and MNIST, and applied different state-of-the-art
models like K nearest neighbor, quadratic discriminant func-
tion, and SVC on them. They have claimed that the accuracy
they have got is quite competitive to the best ones previously
reported on the same datasets. The paper BornoNet [6] by
Akm Shahariar AzadRabby et al. used CNN for classification
on three different datasets which are BanglaLekha-Isolated
dataset, ISI and CMATERdb. The validation score they found
is 95.71%, 96.81% 98%. MM Rahman et al. also applied CNN
on their prepared dataset containing 20000 images having 400
samples for each character on their paper [7] and got accuracy
of 93.93% and 85.36% for training and test sets respectively.
The work by RR Chowdhury et al. used data augmentation on



the dataset BanglaLekhaIsolated [8] and applied CNN to it.
They have found an accuracy of 94.576% and a loss of 0.204.

A review paper by Tapotosh Ghosh et al. has reviewed vari-
ous works currently available on Bengali handwritten character
recognition and compared the performance of their work. The
authors have nicely listed the available papers from which we
can easily understand the impact of machine learning and deep
learning on Bengali handwritten character recognition.

III. DATASET

We have used a dataset which is called Ekush. This dataset
is quite similar to the MNIST [9] dataset. The dimension of
the images of both datasets is 28 ˚ 28. It is the largest dataset
for character recognition, having handwritten Bangla charac-
ters [10]. The dataset consists of Bengali vowels, modifiers,
consonants, compounds, and numerical digits. It has a total of
367, 018 handwritten characters which are isolated and written
by 3086 individual writers. The dataset is also divided into
gender and age groups. There is an equal number of data for
males and females in this dataset. As we are using only the
digits, we have taken the digit dataset for both males and
females. Here, the male dataset has 15, 208 digit and the
female dataset has 15, 622 digit. So we have used 30, 830
digits in total. Table I contains the frequency of individual
digits. We can see that the dataset is almost balanced. So we
did not modify the images.

Digit Size Digit Size

0 3083 5 3081
1 3084 6 3083
2 3075 7 3086
3 3090 8 3087
4 3087 9 3074

TABLE I: Frequency of individual digits in Ekush dataset

We have got the dataset from Kaggle as an individual
spreadsheet. We found that the spreadsheets have 785 columns,
of which the last one was the label. They have labeled the
digits from 112 to 121 representing 0 to 9. At first, we took
the individual male and female datasets in a data-frame and
dropped the label. The data set contains 28ˆ28 pixel grayscale
images, and they are already flattened. So we did not need
to flatten them again. Then we merged the male and female
datasets together as our final data. The labels were also taken
to another array as the target. We subtracted 112 from all the
labels and made them 0 to 9. Finally, all the flattened images
were normalized by 255 as the highest value of a grayscale
image is 255. So now we have a normalized dataset of size
30, 830 having values from 0 ´ 1. We can see some sample
images from the Ekush dataset in Fig. 1.

We partially used another dataset called NumtaDB1 which
was also taken from Kaggle containing 72, 045 unique images
of Bengali digits, from which we took 54908 images for the
experiment. The processing of this dataset was also done in
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Fig. 1: Some sample images from Ekush dataset. Each column
containing 4 images having the digits from 0 ´ 3 and 4 ´ 7
respectively.

Fig. 2: Some sample images from NumtaDb dataset.

the previously described ways, but here the images are in RGB
format. So we had to convert the images to grayscale. We also
resized the images to 28 ˚ 28 pixels. Some samples are shown
in Fig. 2.

IV. METHODOLOGY AND EXPERIMENTS

Machine learning algorithms are mostly used nowadays for
any kind of classification. We must apply some of the basic
machine learning algorithms because we are primarily work-
ing with images classification. Some of them are described
here.

A. Machine Learning Models

First, we used decision tree classifier. A decision tree is a
flowchart-like structure in which each internal node represents
a feature or characteristic, each branch indicates a criterion,
and each leaf reflects the outcome. In a decision tree, the
source node is the uppermost node. We used GINI impurity for
the calculation and made a decision based on the calculation.
Next, random forest classifier is an ensemble approach of
decision trees built on a randomly partitioned database (based
on the divide-and-conquer methodology). A cluster of decision
trees is referred to as a ”forest.” Information gain, GINI index,
or gain ratio, which is attribute selection indicators, create
the individual decision trees. An independent random sample
creates each of the trees that make up a forest.
K nearest neighbor is another algorithm that calculates the
distances of the testing sample from every train data point
and decides which class it should go into. We used 10 as our
parameter in the K nearest neighbor algorithm.
We also used Support vector machine (SVM) as our classi-
fier. Here the decision boundary updates its’ weight using the
train data and classifies the test ones in SVM.
We also used NuSVM which is similar to the SVM in terms



of mathematical calculation. But there is a difference between
them in parameters. SVM uses C as a regularization parameter,
whereas NuSVC uses nu, which is an upper bound on the
fragment of marginal miscalculation and a lower bound on
the fragment of support vectors. It should be in the interval of
p0, 1q.
AdaBoost is an aggregation strategy that combines a group
of weak trainees to develop a solid learner. Usually, decision
stumps created by each weak learner are used to classify the
observations.
GradientBoosting is similar to AdaBoost but works with
residuals to build an additive model. It also introduces the
learning rate.
Naive Bayes is based on Bayes’ formula, but it has a very
naive assumption, which is the assumption of independence.
We have used Gaussian Naive Bayes as our data is continuous.
Here is the equation 1 for the naive Bayes algorithm.

P pc{Xq “ P px1{cq ˚ P px2{cq ˚ ... ˚ P pxn{cq ˚ P pcq (1)

Linear discriminant and quadratic discriminant are two
algorithms where a line and a curve are used to classify the
test data, respectively.

B. Convolutional Neural Network

We applied a convolutional neural network simultaneously
on the Ekush dataset. CNN and artificial neural networks
work pretty similarly. A simple structure in an image can
be detected through convolution. CNN is basically used to
recognize objects in an image. It uses a feed-forward neural
network to classify any complex structure in a digital image.
The three layers it uses are input, hidden, and output layers. A
kernel of a specific size traverse through the image and helps
to detect a particular pattern.

V. EXPERIMENTAL RESULT

A. Experimental Setup:

Both the Ekush and NumtaDB datasets were run through
the previously mentioned machine learning algorithms. In
both experiments, datasets were split into train and test
sets containing 80% and 20% of the images respectively.
We used the sklearn package to use the algorithms. For
Grad-CAM we used a combination of Python 3.6.5, Keras
2.3.1, Tensorflow 2.0.0 and Keras-vis. Google Colaboratory
was used to implement our codes.

For both datasets, the parameters were the same for every
algorithm. For K Nearest Neighbour K was 10, SVC classifier
had kernel=”RBF” which is radial basis function kernel, C “
0.025, probability=True. In decision tree and random forest
classifiers, the maximum depth was not defined. So it was set
to ”none”, as the default value which means that it will expand
the nodes until all the leaves of that tree are pure. All the
other algorithms are kept as they are in their default function
in sklearn. We have used Accuracy as a metric to judge the
models and also calculated the log loss, which is the average
of the sum of the log of improved forecast probabilities for

Fig. 3: Comparison of accuracy among the used algorithms
for NumtaDB dataset.

Fig. 4: Comparison of log loss among the used algorithms for
NumtaDB dataset.

each data point, which can be defined using the Eq. 2. It is
better when the log loss is lower. It means the prediction is
better.
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yk. log pppykqq ` p1´ ykq. log p1´ ppykqq (2)

The comparison of accuracy and log loss of different models
has been shown using bar charts. For visualizing the compar-
ison, we have used the seaborn and matplotlib packages of
Python.

B. Result Analysis

Accuracy and log loss for the 10 algorithms we have used
are given in Table II for Ekush and NumtaDB dataset for a
better understanding of the result.

It can be seen that NuSVC algorithm has the highest
accuracy of 70.445108% and log loss of 1.063555 owning
the lowest of all the algorithms which can be seen in Fig 3
and 4 respectively for NumtaDB dataset. So it is evident that
NuSVC is the best classifier for the NumtaDB dataset. As the
highest accuracy for NumtaDB is only 70.45%, we did not
explore it anymore.

We can see that Random Forest classifier has the highest
accuracy of 91.5018% and log loss of 0.442208 owning
the second lowest of all the algorithms which can be seen
in Fig 5 and 6 respectively for Ekush dataset. Here we



Fig. 5: Comparison of accuracy among the used algorithms
for Ekush dataset.

Fig. 6: Comparison of log loss among the used algorithms for
Ekush dataset.

have also shown the confusion matrix for the random forest
classifier in Fig 7 where we can notice that the ratio of
correct predictions is quite high than the incorrect ones and
an interesting observation is the higher number of the wrong
prediction of the digit 1 with the digit 9 and vice versa as both
the digit seems very close when written in bare hands. After
observing the results, it is clear to us that Random Forest is
the best classifier among the machine learning algorithms for
the Ekush dataset.

As we have achieved a satisfactory result from Ekush
dataset, we decided to explore it more. Next, we applied
a convolutional neural network (CNN) on this dataset. The
configuration of our CNN model – batch size was set to 250,
epoch was 25. We used the sequential model Keras package
for implementing CNN. There were 3 hidden layers in our
CNN model. The first hidden layer had 32 neurons, the kernel
size was p3, 3q and the activation function was a rectified linear
unit (ReLU). Then the second hidden layer had 64 neurons, the
kernel size was p3, 3q, and the activation function was again
a rectified linear unit (ReLU). Then the third hidden layer
had 256 neurons, which is a dense layer where all the inputs
are flattened and the activation function was ReLU. Finally,
a softmax-activated layer is used for performing multiclass
classification at the output layer. Adam was the optimizer of
the model and categorical cross-entropy loss was used as a
loss function. We also used max-pooling of size p2, 2q. Again

Fig. 7: Confusion matrix of the Random Forest Classifier
model trained on Ekush dataset.

Fig. 8: Training and Validation loss for CNN model with
respect to the Epoch.

dropout of 25% neuron was done randomly to avoid overfitting
in the model. The dataset was split into three sections, which
are the train set, validation set, and test set, having a ratio
of 60%,20%, and 20% respectively. We also renamed the last
layer, as we needed it for Grad CAM visualization. After 25
epoch we got the training accuracy of 99.20% and loss of
0.0251, validation accuracy of 96.39%, and loss of 0.1291.
The progress of log loss of both the training and validation
sets in the model is shown here in Fig 8. And lastly, the test
accuracy of 96.71% and loss of 0.1329 is very good accuracy
and better than the accuracy of our previously experimented
random forest model. So, using CNN, we have achieved great
accuracy in the recognition of Bengali handwritten digits.

VI. GRAD-CAM CLASS ACTIVATION MAPS

The invisible layers of a neural network are black boxes
to us. If we want to know the hidden layers of a neural
network, we can use different Explainable AI methods.



Classifier Accuracy(%) Log Loss Accuracy(%) Log Loss

KNeighborsClassifier 89.312400 0.758313 62.890653 3.438639
SVC 83.279273 0.620342 43.490930 1.735782

NuSVC 84.187480 0.613189 70.445108 1.063555
DecisionTreeClassifier 78.738242 7.343551 38.675603 21.180696

RandomForestClassifier 91.501800 0.442208 59.248197 1.447900
AdaBoostClassifier 63.833900 2.198822 32.162891 2.270909

GradientBoostingClassifier 87.609500 0.411749 62.052888 1.305641
GaussianNB 75.559500 7.821966 17.214249 25.294058

LinearDiscriminantAnalysis 80.327600 0.986408 46.638013 1.764705
QuadraticDiscriminantAnalysis 83.376600 5.471474 45.880382 16.527047
Convolutional Neural Network 96.707749 0.132881 ´ ´

TABLE II: Accuracy and Log Loss of different machine learning algorithms for Ekush in coloumn 2´3 and NumtaDB dataset
in coloumn 4´ 5.

Fig. 9: Grad-CAM output on 3 sample of NumtaDB dataset
using the pretrained model on imagenet dataset

There are different XAI methods for explaining a trained
model, like LIME, SHAP, CAM. In describing a neural
network model where gradients are used Grad-CAM is the
perfect candidate. As we are working on image classification
and applied CNN on the Ekush dataset, we can visualize
the CNN model through gradient-weighted class activation
maps or Grad-CAM. Grad-Cam basically works with class
activation maps. As the performance of machine learning
and neural network-based models are increasing the speed of
different complex computations, regression, and classification.
But this comes with a huge risk. [11] We often don’t try to
know what happens inside the models, as the models are like
black boxes to us and we, the users, are forced to trust the
models. We also depend and rely on the models without any
hesitation. It would be great if we could see on what basis a
model generates any type of prediction.

There have been numerous theories proposed to explain
the model’s behavior. The actual implementation of these
approaches is Keras-vis. For visualization, it can be used with
Keras models. The Grad-CAM class activation maps, which
generate heatmaps at the latent convolutional level instead
of the compact layer level, are one of the visualizations
included with Keras-vis. More spatial details are taken into
account during this whole process [12]. Grad-CAM is quite
different than traditional CAM. Traditional CAM can be
used by small ConvNets which are without dense layers,
uninterruptedly passing ahead the convolutional feature maps
to the final layer [13]. But Grad-CAM is based on saliency
maps, which tells us about the significance of the pixels of a
given image. In Grad-CAM the gradient of the output layer,
which is the class prediction layer, is computed concerning
the feature maps of the final layer at first and replaced

with the linear function in the implementation. Then the
gradients subside and measure the comparative significance
of these feature maps for making the class forecasting using
the average pooling. A gradient-weighted CAM heatmap
depicting positive and negative key elements for the input
picture is constructed after producing a linear combination
of the feature maps and their ratings. Those are the areas
that likely contain the region of interest. Finally, the heatmap
was run through a ReLU function to remove the negative
areas, setting their relevance to zero, and maintaining just the
positive areas’ relevance. [13] [12].

We first applied Grad-CAM on some of the data of Num-
taDB dataset using the weights of a pretrained model on the
imagenet dataset [14]. Here are some outputs in Fig 9.
The output was quite satisfactory, as we can see in these
superimposed images.

After applying Grad-CAM in our CNN model fitted on
Ekush dataset, we generated some heatmaps on some of our
train images randomly and got a superimposed image from
the overlay function using the grad cam heatmap and the blue
channel of the images. We have shown some of the results here
in Fig 10. We can see here in the figure that the area of interest
from where the CNN model makes the prediction is colorized
in the heatmap, and we also tried to show whether the heatmap
is generating correctly or not in the superimposed image. We
can now visualize the inner perspective of the model using
this Grad-CAM XAI method for Ekush dataset.

VII. LIMITATIONS AND FUTURE WORK

There are a lot of datasets on Bengali handwritten charac-
ters. Due to time constraints, we have just chosen 2 datasets
and used only the Bengali digit. Besides, the XAI method
we used, which is Grad-Cam, only works on gradient-based
models like neural networks. That is why we could not apply
this XAI method to different machine learning methods like
decision trees or random forests, etc. We can explore some new
dimensions in the future, like (i) finding a more accurate model
for the used dataset (ii) working with other datasets created
on Bengali handwritten digits, and (iii) taking the characters
into consideration and applying different algorithms on them.



Fig. 10: Some output of Grad-CAM on Ekush dataset using CNN. The input image is at the left, heatmap generated by
Grad-CAM is at the middle and the superimposed image is at the right for each three groups of images

VIII. CONCLUSION

In our work, we tried to find out some decent accuracy for
the Ekush and NumtaDB datasets. For the second dataset, the
accuracy is not so good, but we showed some models like
NuSVC and K Nearest Neighbour give us a decent accuracy.
Applying Grad-CAM to this dataset was a good idea. It gives
us a great visualization of the region of interest, although the
weights are from a pretrained model. The Ekush dataset gave
us some good results. We got a great accuracy of 91.50%
using the Random Forest classifier. Besides, CNN has given
us 96.71% testing accuracy from the Ekush dataset. We were
also able to see some great visualization of our CNN model
on some randomly selected images from the test dataset using
the Grad-CAM XAI method. Working with complex Bengali
characters could be great future work. We believe that this
study will add some value in the field of handwritten character
recognition.
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